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Abstract

This paper presents a control method based on virtual

passive dynamic control that will stabilize a robot

manipulator using joint torque sensors and a simple joint

model. The method does not require joint position or
velocity feedback for stabilization. The proposed control

method is stable in the sense of Lyaponov. The control

method was implemented onseveral joints of a laboratory

robot. The controller showed good stability robustness to

system parameter error and to the exclusion of nonlinear

dynamic effects on the joints. The controller enhanced

position tracking performance and, in the absence of

position control, dissipated joint energy.

I. Introduction

Control of robotic systems has been a difficult problem

due to the nonlinearity of the complex system equations.

Several techniques to control this nonlinear system have
been studied. Some methods, such as Jacobian

linearization[ 1] and pseudolinearization[2], have attempted to
linearize the system and apply classical linear system control

techniques to the problem. These methods are only valid

close to a linearization point or trajectory. The feedback

linearization[3] technique attempts to linearize the equations

over a large workspace and has been popular in the robotic
control literature for some time. Feedback linearization

requires good knowledge of the system parameters and states,

else some of the nonlinearity will not be canceled out.

Variable structure control is a purely nonlinear control

method which has been a popular research topic[4].

Although variable structure control is robust, the fast
switching required by the controller to maintain this
robustness is difficult to achieve without chatter. These are

only a few of the many control methods that have been

applied to robot systems.

The main reason for the nonlinearity in the equations is

the need to calculate the dynamic effects on the structure.

Controlling the nonlinear plant based on the full dynamic

equations is not the only method for controlling robot

manipulator. If the joints have a torque sensor along the
drive axis, the problem can be reduced to controlling the

individual joint dynamics. Work in this area has been
published recently[5,61. These methods use known, mostly

linear, electric motor driven joint models to control joint

acceleration and velocity. These methods still require

measurement of joint position and velocity to compute the

control inputs.

Passivity based control methods have been applied to

control in robotics [7,8] and vibration control of space

structures[9]. The problem with the basic passivity control

approach is that it requires velocity feedback. The virtual
passive dynamic control approach [10] has been successful

in stabilizing systems with displacement, velocity, or a

combination of acceleration with displacement and velocity
feedback.

This paper develops a method to stabilize a robot

manipulator with joint torque sensors without directly

measuring joint position, velocity, or acceleration. The

torque sensor output will be used in conjunction with a

simple joint model and the virtual passive dynamic based
control technique to quickly dissipate the kinetic energy in

the robot system. The robustness of the system will be

discussed and the results of an experiment in which a robot

joint was controlled using the proposed method will be
shown.

II. Dynamic model

The following derivation is based on a model of a direct

drive, electric motor driven, revolute joint with an output

torque sensor presented in Kosuge[5].
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Figure 1: Diagram of proposed direct drive joint

This joint is assumed to be pan of a serial linkage

consisting of other revolute joints and rigid links. The

structure of the proposed joint is shown in Fig. I. Each
joint is assumed to have two parameters, rotor inertia and
viscous friction.

Paraphrasing the development in Kosuge [5], the model

of the joint is determined by applying a Newton-Euler

iterative dynamics[ 11 ] approach to a rigid, serially linked
structure with revolute joints. This derivation includes the



motorinertiaandviscousfrictionterms. The full equation

for the joint torque given an arbitrary trajectory was

computed. The terms required to compute the torque were
divided into three groups: terms which depend only on the i'h

joint, terms depending on other joints which affect the i'h

joint, and terms that involve link inertias, masses, and

lengths. The joint torque model resulting from this
derivation is,

7Ji = mi(_i + Tsi + riOi + fi (1)

A ° M ai-lMri = i-I i"_-O (2)
T

m i = Z 0 MriZ 0 (3)

¢0i = ¢.0i_l + Zi_lOi (4)

(oi = (oi-i + z_-lO_+ coi_l x (zi_lO,) (5)

fi = z_[M,_(A°-lCJ°i-I) + a[-,(a°¢-°i)
(6)

x(A_-t MriA__, A ° ¢_oi) + Mri (a °_,toi_1 x zoOi )]

where,

Mi

vi

Aj i

Mri

1:,

o,
O) i

Zi

inertia matrix of the rotor of the i'hjoint

coefficient of the viscous friction torque acting

on the rotor around the joint axis z,i

rotation matrix from frame i to frame j (same

origin)
rotor inertia matrix in reference frame

torque at joint input

the sensed torque along the z axis at the joint
output

joint position
angular velocity of i'hframe in base coordinates
z vector for i'h frame in the base coordinates

Joint specific terms are evident in the model while link

specific terms are contained in the torque measurement along

the axis of rotation. With the exception of the nonlinear

term f, the elements of Eq. (1) depend only on values of the
i 'h joint.

In later sections, the goat will be to develop a controller

that will produce u_, the control input, that will stabilize a

joint described by Eq. (1). If z_=u,, then Eq. (!) can be

solved in terms of the sensed torque.

rsi = --miOi -- ViOl -- fi + bli (7)

where

rsi = "Cxi -- fi (8)

and

rxi = --miO i -- viOi + u i (9)

In section IV, exact knowledge of the term z_ is assumed to

derive a stabilizing control input for the system. In section

V, the robustness of the system to inexact knowledge of z_,
is discussed.

III. Virtual passive dynamic control

The controller design technique used in section IV is

similar to the passive dynamic control technique presented in

Juang[10]. This technique is based on the concept that a

mechanical system can be represented by a second-order

system with inertia, damping and stiffness related

parameters. An active feedback controller can be designed

with its dynamics equivalent to a mechanical system. The
resulting controller is,

HM£c + HoJcc + Hxxc + g(Ys) = u (lO)

where Y5 is the measured system output, g is a user defined

function, x, is the controller state vector of dimension n_,

and HM, Ho, and Hr are the controller mass, damping, and
stiffness matrices respectively. These matrices are design

parameters and can be chosen to meet performance and

stability requirements. The function g is an arbitrary

function of the measured system output, y,. These outputs

can be system states or combinations of system states.

The Lyaponov proof of the stability of the chosen

control law will depend on the rate of change of the system

kinetic energy. Let T be the total kinetic energy of a

mechanical system (linear or nonlinear) with p control

actuators at p physical locations described by p generalized
coordinates x,, and p control inputs u_, i=1,2 ..... p. These

generalized coordinates and their derivatives are physical

quantities of the system. If a mechanical system is

holonomic and scleronomic (no explicit time dependence),

the time derivative of the total kinetic energy is related to

the applied forces by,

dT r.
_=u x a (11)
dt

where xo = ( Xal,Xa2 ..... Xap)T.
Choose the Lyaponov candidate function to be of the

type:

L = T+ q(x_,ka,Xc,k_) (12)

where q is an arbitrary function of the actuator and controller

states, x,, and their rates. Taking the time derivative and

substituting Eq. (11) yields

dL= uric _ + il(X_,k_,j_,x_,k_,yc,.) (13)
dt

If the control inputs, u_, are designed to cause the rate of

change of the Lyaponov function to be negative, the

stability of the system is guaranteed by Lyaponov stability

theory. This stability implies a continual decrease in the

kinetic energy of the system.

Remembering that u is a function of system outputs,

states, and controller states, it can be designed to cancel out

and combine with terms in the derivative of the Lyaponov



candidatefunctionto result in an equation of the following
form,

dL

dt

• T • .T ......
- x,_D2a-xcR(xa,x,_,x,_,xc,Xc,Xc) (14)

where R is a linear function and D is a matrix involving the

system damping. The desired function which implies a

constantly decreasing Lyaponov function is,

dL

dt
• T • .T •

-- X a DX a - x c Dcxc (15)

that can be obtained by making the equality:

R(x,_,Jc a,)_ o,xc,Jc c,2c ) = DcX c (16)

The controller state can be calculated using Eq. (16) and

substituted into Eq. (10) to determine the u_ required to
maintain the Lyaponov stability condition.

IV. Torque _edback

This section will describe a controller using torque

sensor feedback to stabilize a robot system. Let the quantity

rx_be known exactly. Inexact knowledge of Tx_and its

relationship to "t',_will be dealt with in section V. Let:

Mrz = diag(m I ..... m p ) (17)

V = diag(v I ..... Vp) (18)

r x = diag(rxl ..... r w) (19)

Using the virtual passive controller design technique from

the previous section, a controller that satisfies the Lyaponov

stability criteria, (the Lyaponov stability proof may be

found in Appendix A) is given by,

0[:i]-- '
-(mM,z)-'ocJL cj(2o)

+[oo][;x]M# -M,L.'

]Ix,:] (21),,=[xc  V+Dc

where Dc, R. and K,. are design matrices. The restriction on

these design matrices is that Dc and Rr must be a symmetric
and positive-definite. The current control input, u" is used

to calculate the next control input. Note that as described in

the virtual passive controller discussion, the terms

x_, and _ are not the joint position and velocity. They are

controller states used to satisfy the stability condition. As a

result, this controller design can dissipate joint kinetic

energy without joint position or velocity feedback.

V. Stability robustness

The previous control law concentrated on a non-directly

measured value, r,_, instead of the directly measured term,
T_. It was also assumed that no modeling errors were

present and that the nonlinear term, f, was calculable. If the

joint in question does not have a position sensor and/or the

controller did not have information from other joints, the

nonlinear term is incalculable. If additive modeling errors

are present, the joint model becomes:

Ui = (mi + mi )Oi + (vi + vi )Oi + qdsi + fi (22)

Reformatting and solving for _,,,

"_si = r xi - ei (23)

ei = miOi + vi(gi + fi (24)

From Eq. (24), it can be seen that if the kinetic energy in
the joint declines, then the affects of the additive error terms

are reduced. The magnitude of these errors should never be

very high because the m, term, which represents the rotor

inertia along the z axis, should be known precisely from the

motor manufacturer and v, the viscous friction term, while

not easily modeled precisely can be closely approximated by

a simple linear model. Since higher frictional forces

enhance the dissipation of energy, stability will not be
affected if the modeled friction is less than the actual

friction. Due to the low relative magnitude of these errors,
they can be considered disturbances and do not affect the

overall stability of the system.

The nonlinear termf can also be shown to decline with

kinetic energy since it is related to link angular velocity and

acceleration. Assuming a serial robot with a fixed base, the

first joint's angular velocity and acceleration depend on the

magnitude of the first motor's velocity and position. The

second joint's angular velocity and acceleration depend on

the magnitude of the first and second motor's velocity and

acceleration. With the fixed base assumption, the f term for
the first joint is zero. The first joint's passive controller

will then dissipate its energy decreasing the nonlinear effect

on the second joint. The second joint' s nonlinear term is

now only dependent on its state and, for reasonable robot
moves, can be treated as a disturbance. This chain can be

continued for n joints.

Vl. Position control

The virtual passive torque controller can be used with a

position controller as shown in Fig. 2. In this example,

position tracking was implemented by a PD controller

whose torque output was subtracted from the sensed torque

to offset the controller input. This offset input appeared to

the controller as movement. The passive controller's efforts

to dissipate the energy caused by this "movement" causes

the joint to move in the desired direction.
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Figure 2: Control block diagram

Stability is no longer guaranteed when using the position

controller in this manner. Although the torque controller

can be tuned to be stable in areas of minor position

controller instability at the cost of reduced position tracking
elsewhere, true position controller instability will case the

system to become unstable. Interaction between the

position and torque controller is discussed in the next
section.

VII. Experiment

To evaluate the performance of the proposed controller, it

was implemented on the three wrist joints of a laboratory

robot. The robot used was a Robotics Research Corporation

(RRC) 807i manipulator. The 807i has 7 degrees of

freedom, is 0.8m long, and has an approximate payload of
10kg. The manipulator is shown in Fig. 3.

Figure 3: Robotics Research 807i

The goal of the experiment is to show:

1. The controller enhances tracking performance in the

presence of unknown end-effector loading

2. The controller dissipates joint energy without a position
command

3. The controller is stable in multiple configurations

The virtual passive controller shown in Fig. 2 was

implemented on a 68040 based computer, called the control
processor, which communicated with the robot controller

across a bus-to-bus interface. The control processor sent
torque commands to the robot at 200Hz.

The RRC robot was commanded in torque mode. In
this mode, the robot controller uses a basic torque controller

to overcome joint effects. Its goal is to make the harmonic

gear driven joints perform like direct drive joints. The

resulting system does reduce geartrain effects but does not

eliminate the effects. The virtual passive controller must

handle any remaining geartrain friction, hysteresis, or

backlash. Although the model presented in section II was

direct drive, the controller can be used on gear driven joints

if the effects geartrain friction and the gear ratio are

considered and nonlinear geartrain effects, such as backlash,
are minimized.

The motor parameters required by the controller were not
available from the robot manufacturer. Identifying the

parameters of motors installed in the robot proved difficult

due to the parameters small size and the inability to bypass
the low level torque controller. As a result, qualitative data

was used to estimate the parameters and the gains chosen to

produce the required performance. The resulting performance

with substantial modeling errors shows the stability
robustness of the controller.

Tracking performance

To examine how tracking performance varies with end-
effector loading, weights were attached to the end-effector.

The weights were chosen to represent realistic loadings for a

robot of this type and not saturate the actuators. The three

weighting conditions were 0,5, and 101bs. The weights
were attached to the end-effector with a beam which offset

the weight by approximately 23cm from the center of the

end-effector to load the wrist joints properly.

Two controller configurations were used. The first,

utilizing virtual passive control, was the same as found in

Fig. 2. The second, not utilizing virtual passive controller,

sent the output of the PD controller directly to the robot

bypassing the virtual passive controller. The PD controller

was tuned to give reasonable performance without the virtual
passive controller. The same PD gains were used for both

controller configurations.
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Figure 4: Error in joint position with and without virtual

passive controller at different weights (the o plots are with
and the x plots are without the passive controller)

Figure 4 shows the mean and standard deviation of the error

of joint 5, the wrist roll joint, along a representative

4



trajectory.All sevenjointswereactuatedonthistrajectory
(thelowerfourjointsusingtheRRCpositioncontroller)to
addadynamiceffecttothemeasurements.Usingthevirtual
passivecontroller,thetorquesensorscompensatedforthe
addedloadingmaintainingasmallerrormeanandfairly
constantstandarddeviation.Withoutthepassivecontroller,
thePDcontrollererrormeanandstandarddeviationincreases
astheweightincreases.

Energy dissipation

Without the position control generated torque offset, the

theory states that the controller should attempt to dissipate

joint energy. With proper controller tuning, this dissipation

should lead to the joint stopping and resisting movement
with the virtual passive controller enabled. To test this

hypothesis, the robot was commanded along a trajectory

actuating all robot joints. Three seconds into the trajectory,

the position control torque offset was removed. Figure 5

shows the response of joint 7, the toolplate roll joint, along

a representative trajectory. As shown, the controller quickly

stops the joint. The small difference in steady state position

is due to the differing weights. Given enough force, the

robot joint can be pulled off the final position. When the
force is lowered, it will remain at a new position close to

the position where it was when the force was removed.
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Figure 5: Position response of joint 7 with position control
offset removed at 3 sec.

The resulting controller/joint combination acts as a highly

damped joint. Without the virtual passive controller, the

joint runs quickly to the joint stop. It should be noted that

having this highly damped property does not ruin position

tracking as is could if the joint mechanism itself was highly

damped.

The ability of the controller to dissipate energy has
applications in fault tolerant control. This controller can act

as an active joint brake in the absence of a physical brake.

It does not rely on joint position or velocity feedback for
stability so it is robust to the failure of these sensors.

Controller stability

The virtual passive controller was tuned to be stable in

different joint configurations and Ioadings. When the virtual
passive gains were increased to beyond those used in the

experiment which could produce the quick energy dissipation

shown in Fig. 5, two stability problems arose.

The first stability problem involved controller

oscillation. If one joint's torque controller gains are too
high for the current joint load it can begin to oscillate. As

the load is increased, the oscillation damps out. This

oscillation can induce an oscillation into other joints

otherwise stable virtual passive torque controllers. The

oscillations can be eliminated by lowering the passive torque

controller gains.

The seconds stability problem involves the interaction of

the position and virtual passive torque controllers. Figure 6

shows the sensed torque response of joint 5 to a trajectory
with the position controller disabled at three seconds. A

large torque vibration occurred in joints 5 and 7 at the 51b

weight condition. Joint 5 and 7 are both roll joints whose

axes were becoming more parallel as the trajectory

continues. The parallel condition allowed a vibration started

in one joint to resonate into the other joint's sensor. This

resonance does not occur if the passive controller is bypassed

on one of the two joints. The resonance continues if the

passive controller on joint 6 is bypassed removing it as a

cause. The interesting point of the data is that the resonance

occurred at the middle weight condition, not the high or low
condition. This can be explained by the relative control

authority of the passive controller. At low weights, the

passive controller had little authority and the control is

mostly done by the position controller. As the weight

increases, the passive controller gains more authority. At a

moderate weighting condition, the passive controller's

control authority is similar to the position controller and

they begin to interact with neither controller dominating.

At higher weighting conditions, the passive controller

begins to dominate the position controller. When the
position controller's bias is zeroed at three seconds, the

passive controller quickly damps out the resonance. The

position response resulting from these torques was not

adversely affected. However, these quick torque changes put
undue wear on the drivetrain and can excite modes in robot

payloads. Further refining of position controller and passive

torque controller gains will alleviate the problem.
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Figure 6: Torque instability caused by controller interaction

VIII. Conclusion

This paper presented a robot joint controller design using

virtual passive control with a joint torque sensor. A
Lyaponov stable control law was presented and

experimentally tested. Given reasonable joint torque sensor

data, the system provides good stabilization performance

with parameter errors and treating nonlinear dynamic effects

as a disturbance. By using the torque sensor data,

manipulator link dynamics and loads do not need to be

modeled. The controller does not require joint position or

velocity feedback to dissipate joint kinetic energy.
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Appendix A: Lyaponov stability proof

The goal of this appendix is to provide a Lyaponov stability

proof for using virtual passive dynamic control with torque

sensor feedback to stabilize a system. For simplicity of the
proof, let the quantity _x_be known exactly. Choose the

Lyaponov function similar to Eq. (12) with xa=O. A

candidate Lyaponov function for the stability proof is:

1
L = T+ _(J¢o + Jff)rK, M,z(JCa + JCc)

1 r
+ -_ x,. gcx ,

Mrz = diag(m I ..... rap)

(AI)

(A2)

Where K, and K c are design matrices and Mr_ represents the

rotor inertia along the z axis of joints in the system.
Differentiating (A l ),

dL
--- = u7"Xa + (_Ca+ 3_c )T KzMr z (jCa + jcc )
dt

.T
+ X, Kcx c

(A3)

Now, select the control input u to be a function of Tx_,the
controller state vector, the rotor inertia, and the controller

design matrix K, such that

u = Krz x - KrM_)_ c + KrVJc c

V = diag(v I ..... v v )

r x = diag(Txl ..... rxp)

(A4)

(AS)

(A6)

where % is defined in Eq. (9). Substituting the equation for

Tx into Eq. (A4) yields

u = -KTMr. 0_ + Ycc) - Kr V(Jc_ - xc ) + Kru (A7)

Let,

R r =(I-K r)-lK¢ (A8)
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Substituting (A8) into (A7),

u = -R¢Mrz(Ji a + J_c) - R¢V(5% - JCc) (A9)

If R_V and RrM_ are chosen symmetric, replacing u in the

time derivative of the Lyaponov function Eq. (A3) produces:

dL

dt - (J_a + J_c) r RrMrzj¢a - (J¢a - Jcc)r RrVJCa (AI0)
.T

d- (J_a "I- J¢c )T RrMr z (jca + kc ) + Xc KcXc

u = (R r V + D c )Jcc + Kcxc (AIb)

Although the torque sensor related term cancels out of u, the

control input is not independent of "rx because _'_is used to

form x c and its derivative. With Tx as the input, u'as the

current torque command, and u as the output, the control

signal required to stabilize the system can be calculated

using Eq. (20) and (21).

Canceling terms and reformatting,

or

dL • r . jcr R_Vxa- x a R_ VJ¢ a +
dt (A11)

+ j_TerMrz()fa + J¢c)+ jcTgcxc

dL . r • jcr[RrVka- x a R¢ VJca +
dt (A 12)

+ RrMrz(J_ a + J_c)+ KcXc]

Now, define the following equality

RrVJ¢ a + RrMrz()ia + YCc)+ Kcxc =-DcJc c (A13)

where D, is a symmetric and positive-definite matrix. This

equality produces a set of equations that calculate the

controller state vector as a function of the sensed torque.

Substituting Eq. (A 13) into Eq. (Al 2), the time derivative

of the Lyaponov function becomes:

dL . T " JcrcDcJC c (A14)__ = -x a R_VJc a -
dt

This function results in a constantly decaying Lyaponov

function if RrV and D C are chosen to be positive definite and

x c is calculated using a reformatted version of Eq. (A13),

RrMrzJ_ c + DcJc c + Kcx c = -R r (MrzJ_ a + VJ¢a ) (AI5)

Since only zx is known, substitute Eq. (9) and Eq. (A6) into

Eq. (A 15) and add R,u to both sides to replace dependence on

measured joint acceleration and velocity with x,

RrMrzx c + DcJ¢ c + Kcx c + Rru = Rr1: x (AI6)

Using Eq. (A 16) and Eq. (A4), the control input required to

stabilize the system can be calculated as:

u = Rrvr - RrMrz[(RrMrz)-l(-DcJCc - KcX_) (Al7)

+ M_lrx)] + R_VJc_

If R_ and M_ are invertible, as they should be since R_ can

be chosen positive definite and M_. is the full rank diagonal

joint rotor inertia matrix, Eq. (A17) reduces to:
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